Learning Nonlinearly Parametrized Decision Regions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Nonlinearly Parametrized Decision Regions

In this paper we present a deterministic analysis of an online scheme for learning very general classes of nonlinearly parametrized decision regions. The only input required is a sequence ((xk; yk))k2Z+ of data samples, where yk = 1 if xk belongs to the decision region of interest, and yk = 1 otherwise. Averaging results and Lyapunov theory are used to prove the stability of the scheme. In the ...

متن کامل

Parametrized Decision Regions

In this paper we present a deterministic analysis of an online scheme for learning very general classes of nonlinearly parametrized decision regions. The only input required is a sequence ((x k ; y k)) k2Z + of data samples, where y k = 1 if x k belongs to the decision region of interest, and y k = ?1 otherwise. Averaging results and Lyapunov theory are used to prove the stability of the scheme...

متن کامل

Learning of Class Membership Values by Ellipsoidal Decision Regions

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these h...

متن کامل

Self-organizing map learning nonlinearly embedded manifolds

Received: 20 August 2004 Revised: 19 January 2005 Accepted: 24 January 2005 Online publication date: 3 March 2005 Abstract One of the main tasks in exploratory data analysis is to create an appropriate representation for complex data. In this paper, the problem of creating a representation for observations lying on a low-dimensional manifold embedded in high-dimensional coordinates is considere...

متن کامل

Rapid learning with parametrized self-organizing maps

The construction of computer vision and robot control algorithms from training data is a challenging application for artiicial neural networks. However, many practical applications require an approach that is workable with a small number of data examples. In this contribution, we describe results on the use of \Parametrized Self-organizing Maps" (\PSOMs") with this goal in mind. We report resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 1993

ISSN: 1474-6670

DOI: 10.1016/s1474-6670(17)48286-3